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ABSTRACT

This paper examines the effect of fiber and interfacial layer morphologies on thermal stress

fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily lay-

ered concentric cylinder configuration is used to calculate thermal stress fields in MMCs sub-

jected to spatially uniform temperature changes. The fiber is modelled as a layered material with

isotropic or orthotropic, elastic layers whereas the surrounding matrix, including inteffacial

layers, is treated as a strain-hardening, elastoplastic, yon Mises solid with temperature-dependent

parameters. The solution to the boundary-value problem of an arbitrarily layered concentric

cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix

formulation originally developed for stress analysis of multilayered elastic media. Examples are

provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of

multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in

SiC/Ti composites during fabrication cool-down.

INTRODUCTION

Modelling the thermal response of metal matrix composites continues to be an active and

important area of research in composite mechanics. This is motivated, in large part, by current

efforts to develop a new generation of propulsion engines and structural components for use in a

high-speed civil transport for the next century. Metal matrix composites are viable candidates for

such applications because of their potentially superior properties at elevated temperatures. Large

temperature changes however, either due to processing or actual in-service exposure, lead to

high internal thermal stresses caused by a large rnismatch in the thermal expansion coefficients

of the fiber and matrix phases. These thermal stresses can be sufficiently large to yield the

matrix during the fabrication process and/or subsequent service, altering the initial yield surfaces

and subsequent hardening response [1,2]. Radial cracking of the matrix at the fiber/matrix inter-

face caused by circumferential stresses induced during fabrication cool-down also has been
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observedin certaintypesof materialsystemssuchassiliconcarbide/titaniumaluminidecompo-
sites(SiC/Ti-AI) [3].

In addition to radial cracking,longitudinal andcircumferentialcracksat the fiber/matrix

interfacealsoarea sourceof concern[4,5].Thelongitudinalcrackscanbeparticularly detrimen-

tal asthey mayresult in fiber fractures,directly affectingthecomposite'sstrength.The interfa-

cial cracksor debonds,observedin MMCs suchas SiC/Ti in the presenceof relatively low
transversestresses,canenhancematrix plasticity, leadingto largeplastic strainsunderbiaxial

loadingandthuspotentiallossof structuralstability [6,7].

A number of micromechanicalapproacheshave beenemployed to model the thermal

responseof metalmatrix compositesin orderto understandthe influenceof theconstituentpro-

pertieson theevolution of thermalstressesand on the overall effective response.Theserange

from simplemodelsutilizing combinationsof the Reussand Voigt hypothesesfor the stateof

stressandstrain in thefiber andmatrix phases,andcompositecylindermodels,to periodic fiber
arraymodelsbasedon approximateor rigorousgeometricalandanalytical assumptions[8]. In

the majority of theseapproaches,the fiber is treatedashomogeneous,elastic and isotropic or
transverselyisotropic.

Most recently,microstructuresof different typesof fibers used in advancedcomposites

havebeentakeninto accountin modellingthethermalresponse.Avery andHerakovich[9], for

instance,have investigatedthe evolution of residualstressesin polymeric matrix composites

with radially andcircumferentiallyorthotropic,homogeneous,graphitefibersusing thecompo-
sitecylinder assemblagemodel.Warwick andClyne [101modelledthe SiC fiber as a two and

three-layeredmicrostructurewith isotropicand transverselyisotropicsublayersin determining
the residualstressesin SiC/Ti compositesusinga similar methodologyas that employed by
Avery and Herakovich. In the above references,the matrix was treated as elastic with

temperature-independentproperties.

The work by DiCarlo [11],Wawner[12], Lerchet al. [13], andothersindicatesthat certain

typesof silicon carbidefibers usedin SiC/Ti composites,suchasthe SCS6fiber, consistof at

leastfive concentricisotropicandorthotropic layers,as illustratedin Figure 1. The coreof the

fiber is carbonsurroundedby a thin layer of pyrolytic graphite.This is followed by layersof

short-grainedand long-grainedSiC materialencasedin anexternal carbon-richcoating. (We

notethat a recentmicrostructuralinvestigationof the SCS6fiber conductedby Ning and Pirouz

[14] indicates the presence of four distinct SiC regions). The external carbon coating itself is

composed of sublayers with different proportions of atomic elements. In order to be able to

model such fiber microstructures, Sutcu [15] developed a recursive concentric cylinder model

for the thermomechanical response of composites, and used it to determine the thermal stresses



in a SCS6 SiC/Ti-A1 system.The analysiswas conductedassumingelastic, temperature-

independentpropertiesof thephases.

Still anothermicrostructuraldetail that most recentlyhasbeenincorporatedinto various

micromechanicalmodelsis the interfacial layer betweenthe fiber and matrix phases.Sucha

layercanarisenaturallydueto achemicalreactionatthefiber/matrix interface,or isdeliberately

introducedto reduceresidualstressesinducedduring the fabricationcool-down. In the latter

instance,the ideais to taylor thegeometry,thermalandelastoplasticpropertiesof the interfacial

layer in a way that reducesor "smoothsout" theapparentthermalexpansionmismatchbetween
the fiber andmatrix phases.The utility of this concepthasbeeninvestigatedby Arnold andco-

workers [16,17]. Using the compositecylinder micromechanicsmodel and the finite-element

approach,theseauthorsstudiedtheevolutionof residualthermalstressesin SiC/Ti3A1systems
for different combinationsof thermoelastoplasticpropertiesof an interfacial layer.The feasibil-

ity of usinga compliantor compensatinglayer in reducingresidualstressesat the fiber/matrix

interfacewasdemonstrated,and theimportantparametersthatgoverntheevolution of residual

stressesin thepresenceof sucha layerwereidentified.

In this paper, an analytical solution to a micromechanicsmodel for the thermoplastic

responseof metalmatrix compositesis presentedthat is capableof efficiently accommodating

variousmorphologiesof layeredfibers,suchas silicon carbide,and different architecturesof
interfacial layers.The solutionis constructedin a generalmannerthat allows considerationof

arbitrary fiber or interfaciallayerconfigurationswithout theneedto resolvethe problemfor a

particularmaterialsystem.In addition,thesolutionisextremelywell suitedfor computerimple-

mentation.The presentedanalyticalsolutionthusfacilitatesnot only efficient parametricstudies

necessaryin the courseof developingnew compositematerials,but also designof engineered
interfacesfor improvedperformance.Further,thepresentedsolutioncan readilybe incorporated

into anoptimizationalgorithmin orderto efficiently identify optimalconfigurationsor morpho-

logiesfor givenapplications.

Themicromechanicsmodel is basedon theconcentriccylinderassemblageconsistingof an

arbitrary numberof elasticor elastoplasticsublayerswith isotropicor orthotropic,temperature-

dependentproperties.For axisymmetricthermalloading,this modelyieldsrealisticdistributions
of stressanddisplacementfields in the individual phases.An analytical solution to the thermal

boundary-value problem of such a composite cylinder is obtained using the local/global stiff-

ness matrix formulation originally developed by Buffer [18] for analyzing the response of mul-

tilayered, isotropic, elastic media. The application of this technique to problems dealing with the

elastic response of composite materials and structures has been outlined by Pindera [19]. Der-

stine and Pindera [20] used the method to solve the problem of an arbitrarily laminated



graphite/epoxytubeunderaxisymmetricloadingusingtheendochronictheory for the nonlinear
responseof the individual plies. Most recently,PinderaandFreed[21] showedhow this tech-

nique can be applied to axisymmetric,elastoplastic,boundary-valueproblems in composite

mechanics.The local/global stiffnessmatrix formulationallows one to easily incorporateany

numberof concentricshellswith arbitraryelastoplasticpropertiesinto the concentriccylinder

model,while reducingthenumberof equationsrequiredto ensurecontinuity of interfacial trac-

tionsanddisplacementsbetweentheadjacentlayers.

The presentedmodel is subsequentlyemployedto illustratethe effectsof the morphology

of layeredSiC fibersandmultiplecompliantlayersat thefiber/matrix interfaceon theevolution

of thermalstressesin SiC/Ti3A1compositesduring fabricationcool-down.The useof multiple

interfacial layers hasbeen suggestedby Arnold, et al. [16] as a way of smoothing out the

material property mismatch between the fiber and the surrounding matrix phase in order to

optimize thermal stresses at the fiber/matrix interface. This extension of the work of Arnold and

co-workers' facilitates modeling of the interfacial region as a region with spatially variable pro-

perties in order to investigate the effect of property gradients on thermal stress fields.

ANALYTICAL MODEL .....

We consider a long, Cylindrical assemblage consisting of an arbitrary number of concentric

cylinders or shells perfectly bonded to each other, Figure 2. Each of the cylindrical shells may be

either elastic or inelastic. The elastic shells may be isotropic, transversely isotropic, and radially

or circumferentially orthotropic. The inelastic shells are taken as initially isotropic. It is assumed

that all the material parameters governing the response of the elastic and inelastic layers may be

functions of temperature. Although the anaiytical formulation is sufficiently general to admit

time-dependent response of the individual layers, only time-independent plasticity will be con-

sidered here.

A distribution of displacements and stresses in the individual phases of the concentric com-

posite cylinder model is sought under the conditions of a spatially uniform temperature change

that varies with time. A solution of the outlined elastoplastic boundary-value problem is

obtained using the displacement formulation. In what follows, the total strain formulation of the

governing differential equations is employed within the framework of the so-called method of

successive elastic solutions outlined by Mendelson [22] for elastoplastic boundary-value prob-

lems.

In solving the outlined boundary-value problem, the following notation is adopted. The

inner solid core is denoted by a subscript or superscript 1 and the outermost cylindrical shell by

n. The inner radius of the kth shell is denoted by rk_ 1 and the outer radius by rk. The traction and



displacementcomponentsat the innerandouter radii of the kth shellareassignedsuperscripts

"-" and"+", respectively.

For the prescribedaxisymmelricloading,the longitudinal,tangentialand radial displace-

mentcomponentsu, v andw, referredto theCylindricalcoordinatesystemx-r-0 centeredat the

origin of theconcentriccylinderassemblagehavetheform,

u=u(x)=eoX, v=0, w=w(r) (1)

whereeo is the uniform longitudinal strain for all layers. These displacement components yield

the following strain components in the cylindrical coordinate system,

du w(r) dw(r)
exx - dx - e0 ' a°° - r ' err - dr (2)

with the shear strain components identically zero. Since the strain components are either con-

stant or functions of only the radial coordinate r, the stress components are, at most, functions of

r, and so the stress equilibrium equations in cylindrical coordinates reduce to the single equation,

dorr _rr- _0o
-- + - 0 (3)

dr r

The governing differential equation for the radial displacement w(r) in each shell is

obtained by expressing the stress components Crrr and c_0o in Equation (3) in terms of w(r) and its

gradient using stress-strain equations and strain-displacement relations given by Equation (2).

For problems in cylindrical coordinates, the stress-strain equations for an orthotropic material in

the presence of thermal loading and inelastic effects, and in the absence of shear strains, are

given by,

(_xx ]

(lO0_

J

Ifxx Cx0 Cxr ] [Exx-i_! n -tXxx(T-To)]

(4)

in " in
In the above, exx, e00, e_r are total strains, exx, ebn0, £rr are inelastic strains, and C_xx(T- To),
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O_oo(T- To), Otrr(T- TO) are thermal strains, with To denoting a reference temperature and T

denoting the current temperature.

By introducing Equation (4) into the stress equilibrium equation, Equation (3), and taking

advantage of Equation (2), the following differential equations for the distribution of the radial

displacement in the kth shell are obtained.

Transversely isotropic, elastic layers ( Cx0 = Cx_, Coo = C_r, o_oo = O_rr )

d2w 1 dw w

+ rdr r2 -0 (5a)

Orthotropic, elastic layers

d2w 1 dw 1 COO 1[ (Cox - Cxr) (Cri -- C0i)
dr2 + w = Eo+ Er dr r2 Cr_ r Cr_ Crri=x,0,r

oqi(T- To)] (5b)

Isotropic, inelastic layers

d2w 1 dw 1 1 (Cri - C0i) in d Cri in

--dr2 + vw = T _ Crr gii (r) + -_- _ --_--Eii (r) (5c)
r dr i=x,0,r i=x,0,r rr

in

where the distribution of the inelastic strains, £ii (r), is assumed to be known at the beginning of

each thermal load increment.

The solution of the above equations is obtained subject to the boundary condition,

6rr (rn) = 0 (6)

the interfacial displacement and traction continuity conditions,

k-1
Uk_l(rk_l) = uk(rk_l) , (lrr (rk-l) = t_k(rk_l) (7)

and the longitudinal equilibrium condition,



j' axxdAc= 0 (8)

whereAc is thecross-sectionalareaof theconcentriccylinderassemblage.

Using standardtechniques,solutionsto thegoverningdifferential equationsareobtainedin

thefollowing form,

Transversely isotropic, elastic layers

A2

w(r) = AIr + --- (9a)
r

Orthotropic, elastic layers

w(r) = A 1r k + A2 r-_" +
(Cox - Crx) (C_i- Coi)

(Crr -- COO)rea3+ _ ohir(T-To) (9b)i=x,O,r(err - COO)

Ca.
where _. = (...__) 1/2.

tSrr

Isotropic, inelastic layers

r

1
w(r)=-_r -[ E

rk- 1i=x, 0, r

(Cn+ Col)

Crr in , , , r k! Z (Cri-C°i)eln(r')_+ (9c)eii (r)r dr + -2-r _ti=x,O,r C--rr- " "" r

Icn A21
in r,.-1 1) + Air + ---

-_- ]_ -_--"-Eii (rk-1)r(---fi--- r
" i=x,0,r "--IT

where rk_ 1 _<r -< rk.

The above solutions contain unknown coefficients A1k and A2k for each layer, as well as the

unknown, uniform axial strain Co. For the solid core, the constant A_l vanishes since the radial

displacement at the center has to vanish. These unknown coefficients are determined from the

boundary condition, interfacial traction and displacement continuity conditions, and the



longitudinal force equilibrium condition.Application of theseconditions yields a systemof
equationsin theunknownAk andAk coefficientsandtheuniform longitudinal straineo, that is

solved iteratively when the inelastic strains are present. An iterative procedure is required

because the inelastic strains depend implicitly on the unknown coefficients A k and A k. One such

iterative procedure has been proposed by Mendelson [22] in the presence of plastic strains. This

procedure will be employed in the present analysis.

In order to automate the construction of this system of equations so that any arbitrarily lay-

ered configuration can easily be considered, we reformulate the problem in terms of the interfa-

cial radial displacements as the basic unknowns in place of the coefficients A k and A_ by using

the concept of a local stiffness matrix. The local stiffness matrix relates the interfacial tractions

at the inner and outer radii of the kth layer to the corresponding interfacial radial displacements,

and is obtained from the solutions to Equations (5a-c) (i.e. Equations (9a-c)) in conjunction with

the constititive equations and strain-displacement equations, Equations (4) and (2). To construct

the local stiffness matrix for the kth layer, we first express the coefficients A1k and A k in terms

of the interfacial displacements wk(rk-1) and wk(rk) by evaluating the solutions for the radial

displacement component w(r) at the appropriate locations. These expressions are then used in the

equations for the radial stress component in the kth layer given in terms of the determined radial

displacement field. The final step entails an evaluation of the radial stress in the kth layer at the

inner and outer radii in order to generate the radial tractions at those locations.

The form of the local stiffness matrix equation for the kth layer in the state of generalized

plane strain and in the presence of thermal and inelastic effects is

f-cG1k 1,k121 fk,3"Lk ff,'Lk _g1_ k
(10)

The thermal effects are represented by fk and fk,2 which are functions of the thermal expansion

coefficients for the kth layer. The plastic effects are represented by gk and gk, which are given

in terms of the integrals of the plastic strain distribution in the given layer. The elements k_l .....

kk3 of the local stiffness matrix are functions of the geometry and elastic material properties of

the kth layer (which may vary with temperature). These elements are given in the Appendix for

transversely isotropic and orthotropic, elastic layers, and isotropic, inelastic layers. We note that

the inelastic effects do not appear in the elements kij. This has certain advantages that will be

pointed out later.



For the solid core, thecoefficient A_ in Equation(9a-c)vanishesbecausethe radial dis-

placementWl hasto vanish,and sothe relationshipbetweenthe radial traction cry(r1) at the

outerradiusof thecoreandthecorrespondingradial displacementsimplifies to,

(irrl+ = k22wl +1 + kl3E0 + f_(T- TO) + g91 (11)

Imposition of continuity of displacements and tractions along the common interfaces,

Equation (7), together with the boundary condition on the radial stress at rn, Equation (6), and

the longitudinal equlibrium condition specified by Equation (8), gives rise to a system of equa-

tions in the unknown interfacial displacements. The continuity of interfacial stresses is

guaranteed by requiring that the sum of the tractions acting at the kth interface be zero, i.e.,

Orrk++--Oft-k+1- = 0 , k = 1...... n-1 (12)

whereas the continuity of interfacial displacements is directly enforced by requiring the common

interfacial displacement Wk in the expressions for tractions given by Equation (10) to be,

Wk -- WE -" Wk+ i (13)

The system of equations is constructed by applying Equation (12) to each interface, starting with

the inner interface between the core and the first cylindrical shell, in conjunction with the com-

mon interfacial displacements defined by Equation (13). This procedure yields the following

equations,

(k212 + k21)Wl + k122w2 + (k13 + k213)eo =_ (fl + f2)(T_To ) _ (g_ + g_)

,.k+l -k+l. (k_3 +k13 )gokk21wk-1 +(kk2 +hll )Wk +KI2 Wk+l + k+l =_ (f_+f_+l)(T_To)_ (g_+g_ +1) (14)

k_ 1Wn_ 1 + k_2w n + k_3cr. 0 = - f_.(T-T0) - g_

where n is the number of cylindrical shells including the core. The remaining equation necessary

for the solution of the system of equations for the unknown interfacial displacements Wk and the

axial strain eo is provided by the longitudinal equilibrium condition, Equation (8). This yields,



n n n
,4,k+l n

(*12 +t_21)Wl ..... + ..... (_k22 +_?11 )Wk ..... + ..... *22Wn + ZVke0 = - Zf_k(T-T0) - ZFlk
k=l k=l k=l

(15)

where _k 1 , t_k2, Xl/k, _")k and H k are also given in the Appendix.

The system of equations comprised of Equations (14) and (15) can be represented in the

matrix form shown below. We observe that the global stiffness matrix is constructed by first

superposing the local stiffness matrices along the main diagonal in an overlapping fashion, and

then adding a column and a row to account for the thermal effects and the longitudinal equili-

brium condition in the case of free thermal expansion/contraction. Under the conditions of plane

strain, eo vanishes and the nth+l row and column are not added into the global stiffness matrix.

It is a simple matter to construct a computer algorithm for assembling the global stiffness matrix.

:k12 +k21 k122 0 ki3 +k123

k221 k22 +k3!

0 k_31

r

wl] fl+ f_

w21

, . >=-, . -(T-To) -

Wnl f_

eoJ Y_.,"kJ

_1 +g21

j

(16)

The outlined reformulation of the elastoplastic boundary-value problem for an arbitrary

concentric cylinder assemblage using the local/global stiffness matrix approach has the follow-

ing advantages: automatic satisfaction of interfacial continuity conditions in a pointwise fashion;

reduction in the number of the boundary condition and continuity equations by nearly 50% for

large numbers of concentric cylinders; and automatic assembly of the global stiffness matrix,

facilitating the addition of concentric cylinders without additional effort. Furthermore, as the ele-

ments of the stiffness matrices for different types of layers have been provided in closed form,

the outlined thermal boundary-value problem does not have to be resolved each time a particular

concentric cylinder assemblage is considered. Different configurations are efficiently handled by

assembling the global stiffness matrix in an appropriate fashion using the provided local stiffness

matrices.

SOLUTION PROCEDURE

The system of equations given by Equation (16) is solved iteratively at each temperature

step for the specified loading after the manner suggested by Mendelson [22]. The iteration is

10



performedon theplastic force vector thatconsistsof the elementsg_, g_ and _J-Ik. Theseare

expressedin termsof the integralsof theplasticstraindistributionsin thegiven layer that have

theform (seetheAppendix),

rk dr"rk (Cri+C0i) in , , , (Cri- C0i) in __

I _-_ Crr gii (r)r dr ' I _] er r Eii (r') r'
rk-1 i=x,O, r rk_1i=x, O,r

(17)

Since the elements of the global stiffness matrix at a given temperature are constant, only one

inversion of the matrix for each sequence of iterations is required. As the elements f_, f_ and

]_f2 k of the thermal force vector are constant at a given temperature, most of the computational

effort lies in evaluating the integrals in Equation (17) at each iteration. The algorithm for the

iterative procedure is given in the sequel.

For the given temperature increment, the plastic strain distribution in each layer is

expressed in terms of the distribution at the preceding temperature plus an increment that results

from the imposed temperature change.

e_ (r) Icurrent = e_ (r) Iprevious + de_ (r) (18)

The plastic strain increment is derived from the von Mises yield condition which, in the presence

of temperature-dependent elastoplastic properties of the matrix phase, has the form

1 , , 1_2
F= 2_°ij°ij - _o (EP,T) = 0 (19)

__p
where _ is the effective yield stress, which is a function of both the effective plastic strain

temperature. The plastic strain increment is thus,

and

- (3F -d_, = _jdX, (20)
de, - ao 'j

where the proportionality constant d_. is obtained from the consistency condition for plastic load-

ing in the form

11



, , 2 - 0_
_ijDijkl(dakl - de_) + ((hjCij - _o_--_-)dT

d_ = (21)
4 _2 3_ , ,

--9-(Y --0d + (YijDijkl(Ykl

th
where deij are the thermal strain increments given by,

th 3oqj (T) (T - To)]dT (22)
deij = [oqj (T) + OT

Dijkl are the elastic stiffness elements, and Cij - ODijkl E_I. In the present investigation, the elas-
0T

toptastic stress-strain response of the matrix is taken to be bilinear so that the slope of the effec-

tive stress-plastic strain curve, --, is constant at a given temperature.
0gp

The plastic strain distribution in each layer is determined by calculating the plastic strains

at twenty stations after updating the plastic strains at these locations using Equation (18). The

current values for the plastic strains at these stations are then used in determining the integrals

given in Equation (17), and thus the elements of the plastic force vector in Equation (16).

Updated values of the interfacial displacements are then obtained using Equation (16). With a

knowledge of the interfacial displacements and the axial strain Eo, the coefficients A1k and A k in

each layer can be obtained, producing solutions for the radial displacement wk(r) from which

radial and tangential total and plastic strains, and the corresponding stresses, can be obtained.

These are then used to obtain new approximations for the plastic strain increments. The iterative

process is terminated when the differences between two successive sets of plastic strain incre-

ments are less than some prescribed value. The above procedure is described in detail by Men-

delson [22].

APPLICATIONS

As an application of the outlined method, we investigate residual stresses in a concentric

cylinder consisting of a SCS6 SiC fiber surrounded by a layer of titanium matrix that is sub-

jected to a temperature change of -1425 °F [16]. Two cases are considered, namely; a layered

fiber embedded in a homogeneous matrix, and a homogeneous fiber embedded in a matrix with a

layered interface. In both cases, the outer radius of the composite cylinder was normalized to

1.0, with the normalized fiber radius of 0.6320 producing a fiber volume fraction of 0.40. For the

12



second case, the interfacial layer outer radius was 0.6952, resulting in an interfacial volume frac-

tion of 0.08.

The calculations were performed using temperature increments of AT =-2.5°F. Conver-

gence of plastic strain increments at the various radial locations typically did not require more

than ten iterations at each temperature increment. As an additional check, values of the effective

stress calculated from the effective stress-plastic strain curve at various radial locations were

compared with values of the effective stress based on the obtained stress components at these

locations. Typically, differences were a fraction of a percent. As a final check of the accuracy of

the analytical solution, axial, circumferential and radial stress profiles generated at several tem-

peratures during the fabrication cool-down of a homogeneous SiC fiber embedded in an elasto-

plastic matrix were compared with the corresponding results obtained by Arnold, et al. [16]

using a FE solution. Very good agreement was obtained [21].

Case I : Effect of Fiber Microstructure On Thermal Stresses.

As mentioned previously, SCS6 SiC fibers exhibit composite microstructures consisting of

a core surrounded by a number of cylindrical shells, with each region possessing generally dif-

ferent properties. In this work, the SCS6 SiC fiber is modelled using five regions with distinct

properties. The inner carbon core (Region I in Figure 1) is assumed to be isotropic, the pyrolytic

layer (Region II) circumferentially orthotropic, the silicon carbide regions (Regions III and IV)

radially orthotropic, and the outer carbon-rich coating (Region V) isotropic or circumferentially

orthotropic. The evolution of residual stresses is investigated for a total of nine cases in view of

the uncertainty associated with accurate determination of the material properties in the indivi-

dual layers. For the first six cases, a common set of material properties is used in Regions I

through IV, while one set of properties is used in the outer carbon-rich coating or Region V for

cases 1 through 3 and another set for cases 4 through 6. In cases 1 through 3 the outer carbon-

rich coating is taken to be isotropic, whereas in cases 4 through 6 it is assumed to be circum-

ferentially orthotropic with the same properties as Region II. The remaining three cases (cases 7

through 9) are based on material properties of a SCS6 SiC fiber used in an earlier investigation

[23] which are thought to be not as accurate as those employed for cases 1 through 6. Irrespec-

tive of the actual properties employed in the calculations, cases 1, 4 and 7 correspond to equal

expansion coefficients of the two SiC layers in the axial, radial and circumferential directions,

while for cases 2, 5 and 8, and cases 3, 6 and 9, the radial thermal expansion coefficient in the

SiC layers is 25% greater and smaller, respectively, than the thermal expansion coefficients in

the axial and circumferential directions.
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The temperature-independentmaterialparametersfor the five different regionsof the SiC

fiber usedin cases1 through6 aregiven in Table la, whereasthe correspondingtemperature-

dependentthermalexpansioncoefficientsaregivenin Table lb. Thesepropertiesarebasedon

datacompiledby Lara-CurzioandSternstein[24,25]andDiCarlo [26], andarethoughtto be the

bestpropertiesfor the individual regionsof a SCS6SiC fiber availableat thepresenttime. The

temperature-dependentthermalexpansioncoefficientsof theSiC regions(RegionsIII andIV) in

Table lb (cases1 and4) havebeencalculatedusingtheempirical formula provided by Li and
Bradt [27] givenin theform,

O_sic = 3.19×10-6 + 3.6×10-9T- 1.68×10-12T2(oC-1)

Thepropertiesof thedifferent regionsof a SCS6SiC fiber usedfor cases7 through9 aregiven

in Tables2aand2b.As mentionedearlier,thesepropertiesarenotasaccurateasthoseprovided

in Tablesla and lb, andareusedherefor parametricandillustrativepurposes.In particular,we

point out that the two setsof propertiesgiven in Table 1a,bandTable 2a,b,respectively,differ

significantly in thepyrolytic andoutercoatings(RegionsII andV). Theyare identica|in theSiC

regions(RegionsIII andIV) andsomewhatdifferentin thecarboncore (RegionI).

The temperature-dependentmaterialparametersof thetitanium matrix usedin the calcula-

tionsaregivenin Table3. Includedin thetablearethepropertiesof thehomogeneousSiC fiber

employed by Arnold, et al. [16,17] in investigating the effectiveness of a

compliant/compensatinglayer in reducing residual stressesin the matrix adjacent to the

fiber/matrix interface.Theresultsobtained,takinginto accounttheSCS6SiC fiber's microstruc-
ture,arecomparedwith theresultsgeneratedassumingthefiber to behomogeneous.

Theresultsfor theaxial, circumferentialandradial stressdistributionsarepresentedin Fig-
ures3a-c,4a-cand5a-c, respectively,for all

theabovefigures denotescases1 through3,
stressprofiles. The illustratedresidualstress
fiber hasa substantialinfluenceon thestress

theconsideredcases.The letter codea, b andc in

4 through6, and7 through9, for eachof the three

profiles indicatethat the microstructureof theSiC

distributionin the individual layersof thefiber, as
suggestedin the resultsobtainedby previousinvestigators[9,28]. In particular,we note that in

contrastwith the uniform, negative,axial stressobservedin the homogeneousfiber, the axial

stressin the isotropiccarboncore is positivefor all theconsideredcases,Figure3a-c.Therela-
tively high tensilestressesobservedin thefirst sixcasespoint to a potentialfailure of thecarbon

corefor a sufficiently largetensiledeformationappliedto thecompositein thefiber direction.In

fact, given that the Young's modulusof the carboncore is 6.0 Msi, Table la, and neglecting

stressesdueto thePoisson'seffect,anaxialstrainof 1%will generateanaxial stressof 60ksi in
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the core, that,togetherwith the initial residualstressmaybesufficient to fracturethecore [29].

For the last threecases,on theotherhand,the axial stressin thecarboncore is quite low. For

cases1 through6, Figure3a-b,thepyrolytic coatingis eitherin a stateof axial compressionor

tensiondependingon thevaluesof thethermalexpansioncoefficientsin the SiC layersand the

outer coating, while the axial stressdistribution in the slightly radially orthotropic SiC layers

dependson the thermalexpansioncoefficientsin thoselayers.When the threecoefficients are

equal, case1 and 4, a nearlyuniform distribution is observed.When the radial coefficient is

greaterthantheremainingtwo, case2 and5, theaxialstressincreasestowardsthecore,whereas
adecreaseis observedwhentheradialcoefficientis smaller,case3 and6. Theaxial stressin the

outer coating is positivefor cases1through3 andnegativefor cases4 through6. For cases7

through9, Figure 3c, the pyrolytic coatingis in a stateof high axial compressionregardlessof

thevaluesof thethermalexpansioncoefficientsin theSiC layers,while theaxial stressdistribu-

tion in the slightly radially orthotropicSiC layersfollows the sametrendsobservedin cases1

through6. Theaxial stressin theoutercarboncoatingis positivefor cases7 through9 andsmall

in magnitudein comparisonwith

Similar trendsareobserved

ever, thedistributionof thehoop
is substantiallymorenonuniform

3a-b).The largetensilevaluesof

cases1through6.

for thehoopstressdistribution,Figure4a-c. In this casehow-

stresswithin theSiC layersfor cases1through6, Figure4a-b,

in comparisonwith thecorrespondingaxial stresscases(Figure

thehoopstressin theoutercarboncoatingobservedfor cases1

through3 in Figure4a indicatea potentialinitiation sitefor radialmicrocracking.In fact, radial

microcracksin the outer carbon-richcoating have beenreportedby Brindley, et al. [3] and

MacKay, et al. [30]. On the otherhand,if the propertiesof the outer coating are the sameas

thoseof thepyrolytic layer with a largethermalexpansioncoefficient in the radial direction,a

desirablecompressivehoop stressdevelopsin the outer coatingas observedin Figure 4b for

cases4 through6, therebyremovingthe driver for radial cracking in this coating. For cases7

through9 (Figure4c), thevariationof thehoopstressin theSiC layerswith the thermalexpan-

sion coefficient is also much greaterthan in the correspondingaxial stresscase (Figure 3c),

while in theoutercarboncoatingthehoopstressis tensileandrelativelysmall.

The radial stressdistributionsshownin Figure5a-bfor cases1through6 indicatethat the

magnitudeof the radial stressin the SiC layersdirectly adjacentto theouter carboncoating is

affectedby the thermalexpansioncoefficientof theouter coating.In particular, the stresspro-

files areshiftedup, producingsmallermagnitudesof compressiveradial stressin the outerSiC

layerswhen the outer coating hasa high thermalexpansioncoefficient in the radial direction

(cases4 through6). Theform of thestressdistribution,however,remainssimilar in bothsetsof

cases,increasingmonotonically with decreasingradial coordinatein the inner SiC region.
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Within eachsetof cases,thedistributionof radial stressesin theSiCregionsincreasesuniformly

(i.e., shifts up) with increasingthermalexpansioncoefficient in that region. Relatively large

differencesareobservedin theradial stressmagnitudesin theSiC layersfor the different values

of theradial thermalexpansioncoefficient.In thevicinity of thecarboncore, the largestradial
stressis generatedwhenthe radial thermalexpansioncoefficient in theSiC regionsis highest,

cases2 and5. Therelatively largetensilestressesobservedat the interfacesseparatingtheinner

corefrom thepyrolytic coating,andthepyrolytic coatingfrom theSiC regions,point to a poten-
tial debondingof theseinterfacesduring either cool-downor upon tensile loading, given the

poor radial properties of the circumferentially orthotropic pyrolytic coating and the large

Poisson'sratioVxr.We note thatif debondingwereto takeplacebetweenthecarboncoreand/or
pyrolytic coatingandthe surroundingmaterialduringcool-downor subsequenttensileloading,

the initially high residualaxial stressesin thecarboncorewould relax,eliminating the possibil-

ity of failure in thecore. In contrastwith thefirst six cases,theradial stressesin thevicinity of

the carboncore for cases7 through9 areeitherquite tow or compressiveasobservedin Figure

5c. The generalform of the radial stressdistributionsthroughoutthe various fiber regionsfor

thesecases,however,is similar to thedistributionsobservedin theprecedingcases.

Perhapsthe mostimportantresultgainedfrom thedatapresentedin Figures3 through5 is

theobservationthat themicrostructureof theSiC fiber haslittle effecton theelastoplasticstress

distribution in the matrix phasefor the rangeof the employedmaterialparameters.From the

point of view of radial crackingsusceptibilityat the fiber/matrix interface,the circumferential

stresscomponento00plays themostimportantrole.Figure4a-c illustratesthat thereductionin

the circumferentialstressdependson the thermalexpansioncoefficient of both the SiC regions

and the outer carboncoating.Within eachof the threesetsof investigatedcases,the biggest

reductionin the circumferentialstressin thematrix phaseis obtainedwhen the radial thermal

expansioncoefficient Ctrrin the SiC regionsis 25% greaterthan the longitudinal and circum-

ferential thermal expansioncoefficients,denotedby cases2, 5 and 8 in the figures. This is

clearlyconsistentwith thephysicsof thedeformationin thepresenceof constraininglayers,and

is further borneout by thecorrespondingreductionin theradial stressprofile illustratedin Fig-

ure5a-c.The biggestreductionin thehoopstressfor all thecasesoccursfor case5, Figure4b,

whentheradial thermalexpansioncoefficientof theoutercarboncoatingis very largein relation

to that of thematrix. In thiscase,theoutercoatingactsasacompensatinglayer,assuggestedby
the resultsof Arnold, et al. [16,17],resulting in a further decreaseof the matrix hoop stress.

Clearly, however,the reductionsin o00 of the matrix arequite modestfor all the considered

cases.It appearsthat a substantiallygreaterincreasein eithertheradial thermalexpansioncoef-
ficient of the SiC layers(for cases2, 5 and8), or the thicknessof the outer carboncoating(for
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cases4 through6), is requiredto producea significantreductionof the circumferential stress in

the matrix phase at the fiber/matrix interface.

Case II • Effect of Interfacial Layer Morphology On Thermal Stresses.

The work of Arnold, et al. [16,17] indicates that the most important interface layer parame-

ters for reducing the matrix inplane stresses are the thermal expansion coefficient and the thick-

ness of the layer. The thermal expansion coefficient should be chosen such that O_layer > 0_matrix

and the thickness of the compliant layer should be as large as other considerations allow. For a

given thickness of the interfacial layer, the matrix hoop stress decreases with increasing thermal

expansion coefficient of the layer, suggesting that 0_ layer should be as large as possible in relation

tO 0_matrix. However, the reduction in the matrix hoop stress is accompanied by an increase in the

interfacial layer hoop stress itself. In fact, the interfacial layer hoop stress may exceed that in the

matrix phase above a certain value of (t layer, potentially resulting in radial cracking in the inter-

facial layer itself. Elastic and inelastic properties of the interfacial layer appear to play a secon-

dary role as far as the matrix inplane stresses are concerned. Since the results of Arnold, et al.

[16,17] indicate that increasing the thermal expansion coefficient of the interfacial layer

decreases the inplane stresses in the matrix at the expense of larger hoop stresses in the interfa-

cial region, we ask whether grading the thermal expansion coefficient of the interfacial region

using multiple layers offers any advantages over the use of a single interfacial layer with regard

to optimizing hoop stresses in both the interfacial layer and the matrix phase. To answer this

question, we consider the cases of two and three interfacial layers with different thermal expan-

sion coefficients lying between two values, and compare the resulting stress distributions with

those generated in the presence of a single interfacial layer with the two extremal thermal expan-

sion coefficients.

The temperature-dependent material parameters of the fiber and matrix phases of the

SiC/Ti 3 A1 composite used in the calculations are given in Table 3. The elastic and inelastic pro-

perties of the interfacial layers (excluding the Poisson's ratios) were taken to be one half of the

corresponding matrix properties at each temperature. This choice is motivated by the observation

of Arnold, et al. [16] that the elastic and inelastic properties of the interfacial layer should be as

small as possible relative to those of the matrix as regards minimization of overall residual stress

state. The thermal expansion coefficients of the interfacial layers were chosen in the following

manner. First, stress distributions for single interfacial layers having thermal expansion coeffi-

cients two and three times that of the matrix phase were generated independently. Those are

indicated by open and solid circles in the figures that follow. Next, stress distributions in the

presence of two interfacial layers were generated with each layer having thermal expansion
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coefficient two and three times that of the matrix phase.Finally, stressdistributions were

obtainedin the presenceof three layers,with the individual layershaving thermal expansion
coefficientsof two, two andonehalf, andthreetimesthatof thematrixphase.

Figure6 presentsthe hoopstress%o distributionsin the fiber, interfacial layer(s)and the

matrix phasefor the casesof zero,one,two andthreeinterfaciallayers.In thecasesof multiple

interfacial layers,the thermalexpansioncoefficientsweregradedin a monotonicallyincreasing

mannerfrom theinner to theouterinterfaciallayer.Inverting thisgradingsequencereversesthe

stressdistibution in the interfacialregionwithout significantlyaffectingthe stressdistribution in

the matrix phase.The resultspresentedin the figure clearly indicatea reduction in the matrix

hoop stressin the presenceof a single interfacial layer with an increasingthermal expansion

coefficient for the layer asdiscussedby Arnold, et al. [16]. It is seenthat beyondacertainvalue

of the thermalexpansioncoefficient for the interfaciallayer,however,a reductionin the matrix

hoopstressis accompaniedby anincreasein the interfaciallayer hoopstressasalsopointedout

by theaboveauthors.Theuseof multiple interfaciallayers,on theotherhand,tendsto modulate
to a certainextent thestressesin the interfacialregion.It appearsthata moreadvantageoushoop

stressdistribution in the interfacial regioncan potentiallybe obtainedby grading the thermal

expansionproperties,albeit at the expenseof an increasein the matrix hoopstress.The hoop

stressdistribution in the matrix phasein the presenceof two and three interfacial layers is

boundedby thestressdistributionsfor thesingleinterfaciallayers.Virtually no differencein the

matrix hoopstressdistributionis observedwhentwo or threeinterfacial layersarepresent.It is

interestingto note that the hoopstressdistributionin the matrix phaseis not significantly dif-

ferentfrom theone obtainedwith two or threeinterfaciallayersif a single interfacial layerwith

theaveragevalueof thethermalexpansioncoefficientis used,i.e., thermalexpansioncoefficient
two andonehalf timesthat of thematrix phase.Thehoopstressin the interfacial region, in this

case,is approximatelythe averageof thehoopstressobtainedwith the two or three interfacial
layers.This suggeststhatin somesituationsa singleinterfaciallayermaybe sufficient to optim-

izersidual stresses,thuseliminatingtheadditionalcostof depositingmultiple interfacial layers.

The correspondingresultsfor the axial stressOxxdistributionsare illustrated in Figure 7.

For this componentof stress,the presenceof an interfacial layer results in an increaseof the
matrixaxial stressat thefiber/matrixinterfaceandadecreasein theouterregion.Multiple inter-

facial layersproducepotentiallymoredesirablestressdistributionsin the interfacial regiononly,

andwithout offering any advantageover the single interfacial layer with regardto the matrix
axialstressdistribution.As in the preceding case, a single interfacial layer with the average ther-

mal expansion coefficient produces virtually the same axial stress in the matrix phase and an

average stress profile in the interfacial region compared to the multiple layers. Similar
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conclusionscan bedrawnfrom the resultsfor the radial stress distributions presented in Figure

8. Here however, the presence of an interfacial layer results in a decrease in the radial stress dis-

tribufion throughout the entire region of the concentric composite cylinder. The lowest stress

profile is obtained for the single interfacial layer with the highest thermal expansion coefficient.

The two and three inteffacial layers produce virtually identical stress distributions, which are

bounded by the distributions obtained for the single layer cases. Virtually the same distributions

are obtained for a single interfacial layer with the average thermal expansion coefficient both in

the matrix phase and the interfacial region compared to the multiple layers.

CONCLUSIONS

An efficient method has been outlined for the determination of thermoplastic response of

metal matrix composites based on the concentric cylinder geometry. The method is an extension

of the local/global stiffness matrix formulation for layered media that has previously been

applied to elastic problems. Closed-form expressions have been provided for the local stiffness

matrices of isotropic, transversely isotropic and orthotropic layers, in the presence of thermal

and inelastic effects. These expressions can be quickly programmed and a simple algorithm for

assembling the global stiffness matrix can be constructed for any arbitrarily layered concentric

cylinder assemblage. This eliminates the need to resolve the basic problem of a layered concen-

tric cylinder assemblage for the particular geometry under consideration.

The versatility of the method has been illustrated by investigating the effects of fiber and

interfacial layer morphologies on the thermally-induced, residual stresses in SiC/Ti3AI compo-

sites. The results indicate that the layered microstructure of the SiC fiber has little effect on the

residual stress distributions in the matrix phase of a SiC/Ti composite for the considered fiber

volume fraction and material parameters. The stress profiles in the individual layers of the SiC

fiber however, are substantially different than the corresponding profiles in a homogeneous SiC

fiber embedded in the same matrix material. The layered microstructure of the SiC fiber does not

produce substantially different effective properties of the "composite" fiber under axisymmetric

thermomechanical loading from those of a homogeneous SiC fiber. The matrix, therefore, sees

very little difference in the constraint provided by the homogeneous and layered SiC fiber during

thermal loading. Consequently, the stresses at the fiber/matrix interface are not substantially dif-

ferent. On the other hand, the resulting stress profiles in the individual layers of the SiC fiber do

depend to a large extent on the degree of orthotropy of the layers' thermal expansion coefficients

and elastic moduli. For example, the choice of material properties for the outer carbon coating

can significantly affect the radial (and longitudinal) stresses in that region, either accelerating or

delaying radial microcracking. Relatively large longitudinal, tensile stresses also may be present
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in the carbon core after cool-down, potentially leading to fracturing of the carbon core at

moderate axial deformations. Large tensile, radial stresses at the carbon core interface observed

for certain combinations of material properties of the SiC fiber regions point to a potential

debonding of the carbon core and/or the pyrolytic coating from the remaining fiber annulus dur-

ing cool-down or upon tensile loading. Further, a variation in the thermal expansion coefficient

in the SiC layers on the order of 25% is sufficient to produce a substantially different stress dis-

tribution in these layers for certain combinations of material properties. As a result, accurate

knowledge of the properties of the different regions in the SCS6 SiC fiber is thus indispensible

for both the modelling and material development efforts.

With regard to the use of multiple interfacial layers, the results indicate that, for the con-

sidered material system, grading the thermal expansion properties of the sublayers in the

fiber/matrix interfacial region, while keeping all the other properties constant, produces no

reduction of the inplane residual stress distribution in the matrix phase, as compared to the

inplane stresses induced by a single interfacial layer with the higher thermal expansion coeffi-

cient. In fact, introducing additional interfacial layers with a smaller thermal expansion coeffi-

cient than the thermal expansion coefficient of a single interfacial layer actually increases the

inplane residual stresses in the matrix phase over those generated in the presence of the single

interfacial layer. The use of multiple interfacial layers, however, has a potentially beneficial

effect on the stress distribution in the interfacial region itself.

Further, the work of Arnold et al. indicates that the influence of elastic and inelastic proper-

ties of the interfacial region is most dominant When attempting to reduce the stress distribution

in that interfacial region without significantly affecting the matrix stresses. This suggests that the

use of multiple interfacial layers may offer some advantages over single interfacial layers if both

the thermal expansion properties, together with the elastic and inelastic properties, are graded.

Grading in this case has the potential to reduce the generally high stresses in the interfacial

region when compensating layers are used, thus preventing premature failure. This issue will be

addressed in future investigations.
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APPENDIX

Thelocal stiffnessmatrixelementsof transverselyisotropicandorthotropic,elasticcylindr-

ical shells,aswell as isotropic,inelasticcylindrical shellsfor axisymmetric,generalizedplane

strainproblemsin polar coordinatesaregivenbelow.For transverselyisotropic,elasticandiso-

tropic, inelasticshellswith ther - 0planeof isotropywehave,

Elastic contributions

[(C0r + Crr)rk-I - (C0r - Crr)r2/rk-I ]

kll --- r 2 -rk2_l

-2Crrrk-I

k21 - r2 _ r2_l

[(C0r + Crr)rk - (C0r - Crr)r2_l/rk]

k22 = r_ -r_-l

k13 =-Cxo

k23 = Cxo

fl = [CxoO_xx + (Cor + Crr)Oq-r]

f2 = -[CxoU-xx + (C0r + Crr)(/,rr]

_11 = -2_Cx0rk-1

_22 = 2nCx0rk

_'= rCCxx(r 2 - r2_1)

Y_ = -_(CxxO_xx + 2CxoOq-r)(r 2 - r2_l)
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Inelastic contributions

2CoorkG _ --

gi - rE - r_-i Gk

[(Cor + Crr)rk - (C0r - Crr)r2-1/rk]G_

g2 =- rk2 _rk2_l

--+

+ Gk

where,

r •

1

G(r) = _r I X
rk-i i=×, O, r

(Cri +C0i) in ,--, r r

Crr giir °r +2- I
rk_ 1i=x,0,r

(Cri - C0i) indr'

Crr Eii 7 +

1 Cri in r2-1
-0- _ --_--i_ii(rk-l)r(
'_" i=x, 0, r "---rr I".2

---1)

G(r)= (C0r--C00) i (Cri+Coi) in , , (C0r+C00) i
2---I.2" E Eii r dr + E

rk-li=X,0,r Crr 2 rk-i i=x,0,r

(Cri -- C0i) _in dr'
V2ii --7-+

r

1 Cri in rk2-1

_ -_---£ii(rk-1)[C0r( r 2
"" i=x,0,r "--rr

2

--- 1)-Crr(rr @ + 1)1

rk

t in ,--,H 2rt
J Z (-SxiEii r or

=

rk_ t i=x,0,r

For orthotropic, elastic shells we have,

kll =

k12 =

k21 =

_t-, _r2k-1[(fOr + '_'_rr)k-I -- (fOr -- _.C,,)r_X/rk-1]

2"-" k-I k-- At...rrrk_ 1 rk

r_X 2X- rk_ 1

--2_,Crrrk__l r_ -1

rk2_. _r2_K1

rk2X 2_- rk_ 1
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2X
[(C0r + tCrr) r23.-1 - (Cor - kCrr)rk-1/rk]

k22 = r_X_ 2X-- rk_ 1

k13 = -[Cxr + (C0r + Crr)H1 +

23. 3.-1 3.+1,,,
(C0r + _,Crr)(rk-I - rk-lrk )rll

k23 = [Cxr + (C0r + Crr)H1 +

k+l rkX-1 - r_3.)H1(Cot + XCrr)(rk-l

3.-1 _,+1 _r23.)H1(Cor - _,Crr)(rk-1 rk
+ _-_--_- ]

r k - rk_ 1

23. 3.+1-3.-1
(Cor - _Crr)(rk-1 - rk-1 rk )HI ]

+
r23. 23.- rk_ 1

fl = [Cxr(Xxx + Cro°_oo + Crr°q'r - (Cor + Crr)H2 -

23. 3.-1 3.+1 -..
(Co_ + XCrr)(rk-I - rk-I rk )ra2

3.-1 3.+1 -- rZ3.)H2
(C0r - _Crr)(rk-I rk ]

f2 = -[CxrCCxx + GoOtoo + C-r_U_r - (Cot + Crr)H2 -

3.+1 3.-1 _ r_3.)H 2(Cor + _,Crr)(rk-1 rk

2n (rkl-3. 1-3.- rk_l)

-- _'Cxr)rk rk-1 1 - )_¢11- r93._: 23. [(Cx° 2K k-- rk_ 1

- (Cx0 + _.Cxr)rk__l
(r_+X l+X_- rk_l)

I+X

2_ (rk_+l 3.+1-,

0P22 -- r2X _rk_123. [(Cxo + XCxr)rkx 1 +_.-rk-I )
_ _ _LCxr)rk_l rk(Cxo 23. 3.

(rl-3. l-k
--rk-1) ]

I-X

2/tH 1

- r_X_ 23.- rk_ !

3.+1 _ rk_+l)[(Cxo + _Cxr)(rk-1

(r_+l 3.+1-- rk_ 1J

1+_,

- rk-1 rkx)2
+ (Cxo - XCxr)(rkrk_-I 1 _ ] +

X[Cxx + (Cxo + Cxr)Hll(r 2 - r2-1)

2xH2 X+l _ rkk+l
rk2x - rkq23.[(Cxo + _Cxr)(rk-I )

(rkk+l 3.+1- rk_ 1 )

I+X
+ (Cxo --_,Cxr )

(rkr_-i - rk-lr_) 2

1-X
]+

x[(Cx0 + Cxr)H2 - X Cxi°tiil(r_ -r_-l)
i=x,0,r

Cox -- Crx

where H1 - Crr - COO
and H 2 =

Cri - Coi
E ( -- )Oqi"

i=x,0,r Crr - Coo
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Table 1a. Temperature-independent properties of different regions comprising a SCS6 SiC fiber, cases 1-6.

Material properties Region I Region II Region III Region IV Region V

Ref. [24] Ref. [24] Ref. [24,26] Ref. [24,26] Ref. [24]

Exx (Msi) 6.0 25.4 60.0 60.0 11.6 / 25.4

Eoo (Msi) 6.0 25.4 60.0 60.0 11.6 / 25.4

Err (Msi) 6.0 1.0 70.0 84.0 11.6 / 1.0

Vxr 0.24 1.875 0.19 0.19 0.30 / 1.875

Vxo 0.24 0.036 0.25 0.25 0.30 / 0.036

Vr0 0.24 0.075 0.19 0.19 0.30 / 0.075

tXxx (X 10-6 in/in/°F) 5.55 1.00

t_oo (x 10-6 in/in/°F) 5.55 1.00

(x 10--6 in/in/°F) 5.55 15.55

N/A N/A 4.89 / 1.00

N/A N/A 4.89 / 1.00

N/A N/A 4.89 / 15.55

Normalized outer radius 0.2232 0.2512 0.4698 0.9580 1.0000

Table lb. Temperature-dependent thermal expansion coefficients of Regions III and IV of a SCS6 SiC fiber.

O_rr(x 10-6 in/in/°F) 75 OF 392 OF 797 OF 1112 OF 1202 ° F 1500°F

Case 1 & 4 : Otrr= Ctxx= ctoo Ref. [27] 1.82 2.13 2.50 2.77 2.84 3.03

Case 2 & 5 : Ctrr= 1-25O_xx= 1.25ctoo 2,28 2.66 3.13 3.46 3.55 3.79

Case 3 & 6 : t_ = 0.75Otxx = 0.75O_oo 1.37 1.60 1.88 2.08 2.13 2.27
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Table2a.Temperature-independentpropertiesofdifferentregionsof aSCS6SiCfiber,cases7-9.

Material properties Region I Region II Region III Region IV Region V

Ref. [23] Ref. [23] Ref. [23] Ref. [23] Ref. [23]

Exx (Msi) 4.0 32.0 60.0 60.0 4.0

Eoo (Msi) 4.0 32.0 60.0 60.0 4.0

Err (Msi) 4.0 4.0 70.0 84.0 4.0

Vxr 0.20 0.25 0.19 0.19 0.20

Vx0 0.20 0.20 0.25 0.25 0.20

V_0 0.20 0.25 0.19 0.19 0.20

Otxx(X 10-6 in/in/°F) 3.10 0.15

t_o (x 10-6 in/in/°F) 3.10 0.15

(x 10-6 in/in/°F) 3.10 3,10

Normalized outer radius 0.2232

N/A N/A 3.10

N/A N/A 3.10

N/A N/A 3.10

0.2512 0.4698 0.9580 1.0000

Table 2b. Temperature-dependent thermal expansion coefficients of Regions III and IV of a SCS6 SiC fiber.

tXrr (x 10.-6 in/in/oF) 75 OF 392 OF 797 OF 1112 OF 1202 o F 1500°F

Case 7 • _ = tXxx = OtooRef. [23] 1.96 2.01 2.15 2.33 2.38 2.50

Case 8 • Oq-r= 1.25O_xx= 1.25O_oo 2.45 2.51 2.69 2.91 2.97 3.12

Case 9 " tX_r= 0.75tXxx = 0.75txoo 1.47 1.51 1.61 1.75 1.79 1.88
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Table3.Materialpropertiesof homogeneousSiCfiberandtitaniummatrix(Reference[16]).

Materialproperties 75°F 392 °F 797 °F 1112 °F 1202 °F 1500 °F

aomogeneous SiC fiber

o_(x 10--6 in/in/°F) 1.96 2.01 2.15 2.33 2.38 2.50

Young's modulus (Msi) 58.0 58.0 58.0 58.0 58.0 58.0

Poisson's ratio 0.25 0.25 0.25 0.25 0.25 0.25

1"i-24A1-11Nb matrix

cx(x 10--6 in/in/°F) 5.0 5.2 5.7 5.85 5.9 6.15

Young's modulus (Msi) 16.0 14.5 11.0 12.5 9.89 6.2

Poisson's ratio 0.26 0.26 0.26 0.26 0.26 0.26

Yield stress (ksi) 53.89 59.0 53.7 42.2 39.1 24.0

Hardening slope (Msi) 3.333 0.441 0.322 0.187 0.097 0.0

Figure1 .--Microstructure of a SiC fiber (courtesyof Lerch et al., Refer-
ence [13]).
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